cardinality - определение. Что такое cardinality
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cardinality - определение

MEASURE OF THE “NUMBER OF ELEMENTS OF THE SET”, EITHER AS A CARDINAL NUMBER OR AS THE EQUIVALENCE CLASS OF SETS ADMITTING BIJECTIONS TO THIS SET
Cardinal comparison; Set modulus; Cardinalities; Finite cardinality; Set size; Number of elements
  • Bijective function from '''N''' to the set ''E'' of [[even number]]s. Although ''E'' is a proper subset of '''N''', both sets have the same cardinality.
  • '''blue'''}}:''n''∈''T''\''f''(''n'').
  • =5</math>.

cardinality         
<mathematics> The number of elements in a set. If two sets have the same number of elements (i.e. there is a bijection between them) then they have the same cardinality. A cardinality is thus an isomorphism class in the category of sets. aleph 0 is defined as the cardinality of the first infinite ordinal, omega (the number of {natural numbers}). (1995-03-29)
cardinality         
¦ noun (plural cardinalities) Mathematics the number of elements in a particular set or other grouping.
Cardinality         
In mathematics, the cardinality of a set is a measure of the "number of elements" of the set. For example, the set A = \{2, 4, 6\} contains 3 elements, and therefore A has a cardinality of 3.

Википедия

Cardinality

In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = { 2 , 4 , 6 } {\displaystyle A=\{2,4,6\}} contains 3 elements, and therefore A {\displaystyle A} has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible.

The cardinality of a set A {\displaystyle A} is usually denoted | A | {\displaystyle |A|} , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A {\displaystyle A} may alternatively be denoted by n ( A ) {\displaystyle n(A)} , A {\displaystyle A} , card ( A ) {\displaystyle \operatorname {card} (A)} , or # A {\displaystyle \#A} .